AMS 261: Probability Theory (Winter 2016)

Homework 5 (due by 4pm on Wednesday March 16)

- 1. Let X be a random variable defined on a probability space (Ω, \mathcal{F}, P) and taking values in a measurable space (Ψ, \mathcal{G}) , where \mathcal{G} is the σ -field on space Ψ . Consider the collection \mathcal{A} of subsets of Ω consisting of $X^{-1}(B)$ for all $B \in \mathcal{G}$.
 - Show that \mathcal{A} is a σ -field on Ω .
- 2. For k = 1, 2, ..., consider random variables $X_k : (\Omega, \mathcal{F}, P) \to (\Psi_k, \mathcal{G}_k)$ and measurable functions $\varphi_k : (\Psi_k, \mathcal{G}_k) \to (\Theta_k, \mathcal{H}_k)$. Assume that the countable sequence of random variables $\{X_k : k = 1, 2, ...\}$ is independent.
 - Prove that the sequence $\{\varphi_k \circ X_k : k = 1, 2, ...\}$ is independent.
- 3. Let $\{A_n : n = 1, 2, ...\}$ be a countable independent sequence of events on a probability space (Ω, \mathcal{F}, P) .
 - Prove that $P(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} P(A_n)$. (Note: For a countable sequence of reals, $\{b_n : n = 1, 2, ...\}$, the infinite product $\prod_{n=1}^{\infty} b_n$ is defined by $\lim_{n\to\infty} \prod_{k=1}^{n} b_k$, provided this limit exists.)
- 4. Consider two countable sequences of events, $\{A_n : n = 1, 2, ...\}$ and $\{B_n : n = 1, 2, ...\}$, on the same probability space (Ω, \mathcal{F}, P) . Assume that, for each n, A_n and B_n are independent. Moreover, assume that $A = \lim_{n \to \infty} A_n$ and $B = \lim_{n \to \infty} B_n$ exist.
 - Show that A and B are independent.
- 5. A sequence $\{X_n: n=1,2,...\}$ of \mathbb{R} -valued random variables, defined on a common probability space (Ω, \mathcal{F}, P) , is said to converge completely if for any $k=1,2,...,\sum_{n=1}^{\infty}P(|X_n|>k^{-1})<\infty$.

 Show that if $\{X_n: n=1,2,...\}$ converges completely, then $\lim_{n\to\infty}X_n=0$ almost surely.
- 6. Construct a sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables (i.e., $X_n \ge 0$, for all n) that satisfies $\sum_{n=1}^{\infty} P(X_n > k^{-1}) < \infty$, for any k = 1, 2, ..., but for which $\lim_{n \to \infty} \mathrm{E}(X_n) \ne 0$.
- 7. Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that each random variable X_n is uniformly distributed on (0,1), hence, $P(c < X_n < d) \equiv P(\{\omega \in \Omega : X_n(\omega) \in (c,d)\}) = d c$, for any $0 \le c < d \le 1$.
 - Show that the sequence $\{1/(n^2X_n): n=1,2,...\}$ converges almost surely to 0 as $n\to\infty$.