AMS 261: Probability Theory (Winter 2016)

Homework 4 (due Thursday March 3)

1. Consider a sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of $\overline{\mathbb{R}}$-valued random variables defined on the same probability space (Ω, \mathcal{F}, P). Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega, X_{n}(\omega) \leq X_{n+1}(\omega)$. Moreover, assume that $\mathrm{E}\left(X_{1}\right)>-\infty$. Denote by X the pointwise limit of $\left\{X_{n}: n=1,2, \ldots\right\}$, that is, for each $\omega \in \Omega, X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)$.

- Prove that $\mathrm{E}(X)=\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)$.

2. Let $\left\{X_{n}: n=1,2, \ldots\right\}$ be a countable sequence of $\overline{\mathbb{R}}^{+}$-valued random variables defined on a common probability space (Ω, \mathcal{F}, P), and assume that $\mathrm{E}\left(\sum_{n=1}^{\infty} X_{n}\right)<\infty$.

- Show that $\mathrm{E}\left(\sum_{n=1}^{\infty} X_{n}\right)=\sum_{n=1}^{\infty} \mathrm{E}\left(X_{n}\right)$.

3. Let $\left\{X_{n}: n=1,2, \ldots\right\},\left\{Y_{n}: n=1,2, \ldots\right\}$, and $\left\{Z_{n}: n=1,2, \ldots\right\}$ be sequences of \mathbb{R}-valued random variables (all the random variables are defined on the same probability space). Assume that: (a) $\mathrm{E}\left(X_{n}\right)$ and $\mathrm{E}\left(Z_{n}\right)$ exist for all n and are finite; (b) each of the three sequences converges almost surely (denote by X, Y, and Z the respective almost sure limits); (c) $\mathrm{E}(X), \mathrm{E}(Y)$, and $\mathrm{E}(Z)$ exist and are finite; (d) $X_{n} \leq Y_{n} \leq Z_{n}$ almost surely; (e) $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)=\mathrm{E}(X)$, and $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=\mathrm{E}(Z)$.

- Show that $\lim _{n \rightarrow \infty} \mathrm{E}\left(Y_{n}\right)=\mathrm{E}(Y)$.

4. Let $\left\{X_{n}: n=1,2, \ldots\right\}$ be a countable sequence of \mathbb{R}-valued random variables defined on a common probability space (Ω, \mathcal{F}, P). Assume that there exist finite real constants $p>1$ and $K>0$ such that $\sup _{n} \mathrm{E}\left(\left|X_{n}\right|^{p}\right) \leq K$.

- Show that $\left\{X_{n}: n=1,2, \ldots\right\}$ is uniformly integrable.

5. Let X be an \mathbb{R}-valued random variable, defined on a probability space (Ω, \mathcal{F}, P), with finite expectation $\mu=\mathrm{E}(X)$ and finite standard deviation $\sigma=(\operatorname{Var}(X))^{1 / 2}$.

- Prove that for any $0 \leq z \leq \sigma$,

$$
P(\{\omega \in \Omega:|X(\omega)-\mu| \geq z\}) \geq \frac{\sigma^{4}\left\{1-(z / \sigma)^{2}\right\}^{2}}{\mathrm{E}\left(|X-\mu|^{4}\right)}
$$

6. Let $\left\{X_{n}: n=1,2, \ldots\right\}$ be a sequence of \mathbb{R}-valued random variables defined on a common probability space (Ω, \mathcal{F}, P). Suppose there exists an \mathbb{R}^{+}-valued random variable Y, defined on (Ω, \mathcal{F}, P), such that $\mathrm{E}(Y)<\infty$ and $\left|X_{n}\right| \leq Y$, almost surely, for all n.

- Show that $\left\{X_{n}: n=1,2, \ldots\right\}$ is uniformly integrable.

7. Consider a countable sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of $\overline{\mathbb{R}}$-valued random variables, defined on a common probability space (Ω, \mathcal{F}, P), and an increasing function $G:[0, \infty) \rightarrow[0, \infty)$, which satisfies $\lim _{t \rightarrow \infty}\left\{t^{-1} G(t)\right\}=\infty$ and $0<\sup _{n} \mathrm{E}\left\{G\left(\left|X_{n}\right|\right)\right\}<\infty$.

- Prove that $\left\{X_{n}: n=1,2, \ldots\right\}$ is uniformly integrable.

