AMS 261: Probability Theory (Winter 2016)

Homework 4 (due Thursday March 3)

- Consider a sequence {X_n : n = 1, 2, ...} of ℝ-valued random variables defined on the same probability space (Ω, F, P). Assume that the sequence is (pointwise) increasing, that is, for all n and for each ω ∈ Ω, X_n(ω) ≤ X_{n+1}(ω). Moreover, assume that E(X₁) > -∞. Denote by X the pointwise limit of {X_n : n = 1, 2, ...}, that is, for each ω ∈ Ω, X(ω) = lim_{n→∞} X_n(ω).
 Prove that E(X) = lim_{n→∞} E(X_n).
- 2. Let $\{X_n : n = 1, 2, ...\}$ be a countable sequence of $\overline{\mathbb{R}}^+$ -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) , and assume that $\mathrm{E}(\sum_{n=1}^{\infty} X_n) < \infty$.
 - Show that $\operatorname{E}\left(\sum_{n=1}^{\infty} X_n\right) = \sum_{n=1}^{\infty} \operatorname{E}(X_n).$
- 3. Let {X_n : n = 1,2,...}, {Y_n : n = 1,2,...}, and {Z_n : n = 1,2,...} be sequences of ℝ-valued random variables (all the random variables are defined on the same probability space). Assume that: (a) E(X_n) and E(Z_n) exist for all n and are finite; (b) each of the three sequences converges almost surely (denote by X, Y, and Z the respective almost sure limits); (c) E(X), E(Y), and E(Z) exist and are finite; (d) X_n ≤ Y_n ≤ Z_n almost surely; (e) lim_{n→∞} E(X_n) = E(X), and lim_{n→∞} E(Z_n) = E(Z).
 - Show that $\lim_{n\to\infty} E(Y_n) = E(Y)$.
- 4. Let $\{X_n : n = 1, 2, ...\}$ be a countable sequence of \mathbb{R} -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that there exist finite real constants p > 1 and K > 0 such that $\sup_n \mathbb{E}(|X_n|^p) \leq K$.
 - Show that $\{X_n : n = 1, 2, ...\}$ is uniformly integrable.
- 5. Let X be an \mathbb{R} -valued random variable, defined on a probability space (Ω, \mathcal{F}, P) , with finite expectation $\mu = \mathcal{E}(X)$ and finite standard deviation $\sigma = (\operatorname{Var}(X))^{1/2}$.
 - Prove that for any $0 \le z \le \sigma$,

$$P(\{\omega \in \Omega : |X(\omega) - \mu| \ge z\}) \ge \frac{\sigma^4 \{1 - (z/\sigma)^2\}^2}{\mathcal{E}(|X - \mu|^4)}$$

- 6. Let {X_n : n = 1, 2, ...} be a sequence of ℝ-valued random variables defined on a common probability space (Ω, F, P). Suppose there exists an ℝ⁺-valued random variable Y, defined on (Ω, F, P), such that E(Y) < ∞ and |X_n| ≤ Y, almost surely, for all n.
 Show that {X_n : n = 1, 2, ...} is uniformly integrable.
- 7. Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables, defined on a common probability space (Ω, \mathcal{F}, P) , and an increasing function $G : [0, \infty) \to [0, \infty)$, which satisfies $\lim_{t\to\infty} \{t^{-1}G(t)\} = \infty$ and $0 < \sup_n \mathbb{E}\{G(|X_n|)\} < \infty$.
 - Prove that $\{X_n : n = 1, 2, ...\}$ is uniformly integrable.