AMS 261: Probability Theory (Winter 2016)

Homework 3 (due Thursday 2/18)

- 1. Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that all random variables X_n have the same distribution, with distribution function given by $F(x) = 1 - \exp(-x), x \in \mathbb{R}^+$.
 - Show that

$$P\left(\liminf_{n \to \infty} \left\{ \omega \in \Omega : X_n(\omega) \le (1+\delta)\log(n) \right\} \right) = 1,$$

for any fixed $\delta > 0$.

2. Let F and G be distribution functions on \mathbb{R} such that $G(t) \leq F(t)$, for all $t \in \mathbb{R}$ (in which case, G is said to be *stochastically larger* than F).

• Construct two \mathbb{R} -valued random variables X and Y, defined on the same probability space (Ω, \mathcal{F}, P) , such that the distribution function of X is G, the distribution function of Y is F, and $P(X \ge Y) = 1$.

- 3. Consider a simple random variable X defined on some probability space (Ω, \mathcal{F}, P) , and let F be its distribution function. Denote by $F(x^-) = \lim_{y \nearrow x} F(y)$ (or equivalently, $F(x^-) = \lim_{n \to \infty} F(x_n)$ for an arbitrary increasing sequence $\{x_n : n = 1, 2, ...\}$ converging to x).
 - \bullet Show that the expectation of X can be written in the form

$$\mathbf{E}(X) = \sum_{x \in \mathbb{R}} x \{ F(x) - F(x^{-}) \}.$$

4. Let X be a simple random variable (taking both negative and positive values) defined on some probability space (Ω, \mathcal{F}, P) .

• Show that expectation definitions 1 (for simple random variables) and 3 (for general random variables taking values on the extended real line) are equivalent.

- 5. Consider an $\overline{\mathbb{R}}^+$ -valued random variable X defined on some probability space (Ω, \mathcal{F}, P) , and assume that $\mathbb{E}(X) < \infty$. Let $A = \{\omega \in \Omega : X(\omega) = +\infty\}$, and note that, based on the general definition for $\overline{\mathbb{R}}^+$ -valued measurable functions, we have $A \in \mathcal{F}$.
 - Show that X is almost surely finite, that is, P(A) = 0.
- 6. Consider a sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega$, $X_n(\omega) \leq X_{n+1}(\omega)$. Denote by X the pointwise limit of $\{X_n : n = 1, 2, ...\}$, that is, for each $\omega \in \Omega$, $X(\omega) = \lim_{n \to \infty} X_n(\omega)$, and assume that $E(X) < \infty$. Define the variance for X by $Var(X) = E\{(X - E(X))^2\}$, and similarly, for each n, $Var(X_n) = E\{(X_n - E(X_n))^2\}$. (In general, the variance for a random variable Y with finite expectation E(Y) is given by $Var(Y) = E\{(Y - E(Y))^2\}$, whether finite or infinite.)
 - Prove that $\operatorname{Var}(X) = \lim_{n \to \infty} \operatorname{Var}(X_n)$.