AMS 261: Probability Theory (Winter 2016)

Homework 1 (due Thursday 1/21)

1. Consider a sample space Ω.
(a) Prove that any intersection of σ-fields (of subsets of Ω) is a σ-field. That is, if $\mathcal{F}_{j}, j \in J$, are σ-fields on Ω (with J an arbitrary index set, countable or uncountable), then show that $\mathcal{F}=$ $\bigcap_{j \in J} \mathcal{F}_{j}$ is a σ-field.
(b) Show by counterexample that a union of σ-fields may not be a σ-field.
2. Given a sample space Ω and a collection \mathcal{E} of subsets of Ω, the σ-field generated by $\mathcal{E}, \sigma(\mathcal{E})$, is defined as the intersection of all σ-fields on Ω that contain \mathcal{E}. (As discussed in class, $\sigma(\mathcal{E})$ is the smallest σ-field that contains \mathcal{E}.)
(a) Consider two collections \mathcal{E}_{1} and \mathcal{E}_{2} of subsets of Ω. Show that if $\mathcal{E}_{1} \subseteq \mathcal{E}_{2}$, then $\sigma\left(\mathcal{E}_{1}\right) \subseteq \sigma\left(\mathcal{E}_{2}\right)$.
(b) As in part (a), let \mathcal{E}_{1} and \mathcal{E}_{2} be collections of subsets of the sample space Ω. Prove that if $\mathcal{E}_{1} \subseteq \sigma\left(\mathcal{E}_{2}\right)$ and $\mathcal{E}_{2} \subseteq \sigma\left(\mathcal{E}_{1}\right)$, then $\sigma\left(\mathcal{E}_{1}\right)=\sigma\left(\mathcal{E}_{2}\right)$.
3. Let \mathcal{F} be a collection of subsets of a sample space Ω.
(a) Suppose that $\Omega \in \mathcal{F}$, and that when $A, B \in \mathcal{F}$ then $A \cap B^{c} \in \mathcal{F}$. Show that \mathcal{F} is a field.
(b) Suppose that $\Omega \in \mathcal{F}$, and that \mathcal{F} is closed under the formation of complements and finite pairwise disjoint unions. Show by counterexample that \mathcal{F} need not be a field.
4. Consider the sample space $\Omega=(0,1]$ and the collection \mathcal{B}_{0} of all finite pairwise disjoint unions of subintervals of $(0,1]$. That is, any member B of \mathcal{B}_{0} is of the form $B=\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right]$, where n is finite, and for each $i=1, \ldots, n, 0 \leq a_{i}<b_{i} \leq 1$, with $\left(a_{i}, b_{i}\right] \cap\left(a_{j}, b_{j}\right]=\emptyset$ for any $i \neq j$.
Show that \mathcal{B}_{0} augmented by the empty set is a field, but not a σ-field.
5. Let $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ be a countable set, $\left\{p_{n}: n=1,2, \ldots\right\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} p_{n}=1$, and \mathcal{F} be the collection of all subsets of Ω. For each $A \in \mathcal{F}$, define the set function

$$
P(A)=\sum_{\left\{n: \omega_{n} \in A\right\}} p_{n} .
$$

Show that (Ω, \mathcal{F}, P) is a probability space.

