AMS 261: Probability Theory (Winter 2016) Convergence theorems for expectations

Monotone convergence theorem: Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence is pointwise (or almost surely) increasing, that is, for all $n, X_n(\omega) \leq X_{n+1}(\omega)$ for all $\omega \in \Omega$ (or all ω in an event of probability 1). Denote by X the pointwise (or almost sure) limit of the sequence $\{X_n : n = 1, 2, ...\}$.

• Then, $\lim_{n\to\infty} \mathrm{E}(X_n) = \mathrm{E}(X)$.

Fatou lemma: Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of $\overline{\mathbb{R}}^+$ -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) .

• Then, $E(\liminf_{n\to\infty} X_n) \leq \liminf_{n\to\infty} E(X_n)$.

Dominated convergence theorem: Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume there exists a random variable Y (also defined on (Ω, \mathcal{F}, P)) such that $|X_n| \leq Y$, almost surely for all n, and $\mathrm{E}(Y) < \infty$.

• Then,

$$-\infty < \mathrm{E}(\liminf_{n \to \infty} X_n) \le \liminf_{n \to \infty} \mathrm{E}(X_n) \le \limsup_{n \to \infty} \mathrm{E}(X_n) \le \mathrm{E}(\limsup_{n \to \infty} X_n) < \infty$$

In addition to the assumptions $|X_n| \leq Y$, almost surely for all n, and $E(Y) < \infty$, assume that the sequence $\{X_n : n = 1, 2, ...\}$ converges almost surely to random variable X (also defined on (Ω, \mathcal{F}, P)).

• Then, $E(|X|) < \infty$, $\lim_{n \to \infty} E(X_n) = E(X)$, and $\lim_{n \to \infty} E(|X_n - X|) = 0$.

Bounded convergence theorem: Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence converges almost surely to random variable X (also defined on (Ω, \mathcal{F}, P)) and that $|X_n| \leq M$, almost surely for all n, where M is a finite constant.

• Then, $E(|X|) \leq M$, $\lim_{n\to\infty} E(X_n) = E(X)$, and $\lim_{n\to\infty} E(|X_n - X|) = 0$.

Definition of uniform integrability: A sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables (defined on the same probability space (Ω, \mathcal{F}, P)) is uniformly integrable if

$$\lim_{c \to \infty} \sup_{n} E\left(|X_n| 1_{(|X_n| \ge c)}\right) = 0$$

Uniform integrability criterion: Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence converges almost surely to random variable X (also defined on (Ω, \mathcal{F}, P)) and that $\mathrm{E}(|X_n|) < \infty$, for all n.

- Then the following three statements are equivalent:
- (i) $\{X_n : n = 1, 2, ...\}$ is uniformly integrable
- (ii) $\mathrm{E}(|X|) < \infty$ and $\lim_{n \to \infty} \mathrm{E}(|X_n X|) = 0$
- (iii) $\lim_{n\to\infty} \mathrm{E}(|X_n|) = \mathrm{E}(|X|) < \infty$

Moreover, each of (i), (ii) or (iii) implies:

(iv) $\lim_{n\to\infty} E(X_n) = E(X)$